Virtual Reality over Wireless Networks: Quality-of-Service Model and Learning-Based Resource Management
نویسندگان
چکیده
In this paper, the problem of resource management is studied for a network of wireless virtual reality (VR) users communicating over heterogeneous small cell networks (SCNs). In order to capture the VR users’ quality-of-service (QoS) in SCNs, a novel VR model, based on multi-attribute utility theory, is proposed. This model jointly accounts for VR metrics such as tracking accuracy, processing delay, and transmission delay. In this model, the small base stations (SBSs) act as the VR control centers that collect the tracking information from VR users over the cellular uplink. Once this information is collected, the SBSs will then send the three dimensional images and accompanying surround stereo audio to the VR users over the downlink. Therefore, the resource allocation problem in VR wireless networks must jointly consider both the uplink and downlink. This problem is then formulated as a noncooperative game and a distributed algorithm based on the machine learning framework of echo state networks (ESNs) is proposed to find the solution of this game. The use of the proposed ESN algorithm enables the SBSs to predict the VR QoS of each SBS and guarantees the convergence to a mixed-strategy Nash equilibrium. The analytical result shows that each user’s VR QoS jointly depends on both VR tracking accuracy and wireless resource allocation. Simulation results show that the proposed algorithm yields significant gains, in terms of total utility value of VR QoS, that reach up to 22% and 38.5%, respectively, compared to Q-learning and a baseline proportional fair algorithm. The results also show that the proposed algorithm has a faster convergence time than Q-learning and can guarantee low delays for VR services.
منابع مشابه
Echo State Learning for Wireless Virtual Reality Resource Allocation in UAV-enabled LTE-U Networks
In this paper, the problem of resource management is studied for a network of wireless virtual reality (VR) users communicating using an unmanned aerial vehicle (UAV)-enabled LTE-U network. In the studied model, the UAVs act as VR control centers that collect tracking information from the VR users over the wireless uplink and, then, send the constructed VR images to the VR users over an LTE-U d...
متن کاملAn Adaptive Congestion Alleviating Protocol for Healthcare Applications in Wireless Body Sensor Networks: Learning Automata Approach
Wireless Body Sensor Networks (WBSNs) involve a convergence of biosensors, wireless communication and networks technologies. WBSN enables real-time healthcare services to users. Wireless sensors can be used to monitor patients’ physical conditions and transfer real time vital signs to the emergency center or individual doctors. Wireless networks are subject to more packet loss and congestion. T...
متن کاملSimulate Congestion Prediction in a Wireless Network Using the LSTM Deep Learning Model
Achieved wireless networks since its beginning the prevalent wide due to the increasing wireless devices represented by smart phones and laptop, and the proliferation of networks coincides with the high speed and ease of use of the Internet and enjoy the delivery of various data such as video clips and games. Here's the show the congestion problem arises and represent aim of the research is t...
متن کاملHuman-in-the-Loop Wireless Communications: Machine Learning and Brain-Aware Resource Management
Human-centric applications such as virtual reality and immersive gaming will be central to the future wireless networks. Common features of such services include: a) their dependence on the human user’s behavior and state, and b) their need for more network resources compared to conventional cellular applications. To successfully deploy such applications over wireless and cellular systems, the ...
متن کاملEcho State Transfer Learning for Data Correlation Aware Resource Allocation in Wireless Virtual Reality
In this paper, the problem of data correlation-aware resource management is studied for a network of wireless virtual reality (VR) users communicating over cloud-based small cell networks (SCNs). In the studied model, small base stations (SBSs) with limited computational resources act as VR control centers that collect the tracking information from VR users over the cellular uplink and send the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1703.04209 شماره
صفحات -
تاریخ انتشار 2017